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The electronic structure of a prototype Kondo system, a cobalt impurity in a copper host is calculated,
accurately taking into account correlation effects on the Co atom. Using the recently developed continuous-
time Quantum Monte Carlo technique, it is possible to describe the Kondo resonance with a complete four-
index Coulomb interaction matrix. We demonstrate that a standard practice of using a truncated Hubbard
Hamiltonian to consider the Kondo physics can be inadequate. Using the full Coulomb vertex on Co, we study
the qualitative dependence of the Kondo resonance on the local coordination.
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I. INTRODUCTION

Scanning tunneling microscopy has become one of the
most basic tools for the manipulation of matter at the atomic
scale. Although this experimental technique has reached ma-
turity, the detailed theoretical understanding of experimental
data is still incomplete and/or contradictory. One of the most
famous examples of atomic manipulation is associated with
the Kondo effect1 observed when transition-metal ions �such
as Co� are placed on a metallic surface �such as Cu �111��.2,3

This Kondo effect is the basis for the observation of surpris-
ing phenomena such as quantum mirages4 and has attracted a
lot of attention and interest in the last few years. Early inter-
pretations of these observations were based on the assump-
tion that only surface states of Cu �111� are involved in the
scattering of electron waves by the Co adatoms.5–7 However,
later experiments with Co atoms on the Cu �100� surface
�that does not have any surface state�8 or in Cu �111� but
close to atomic surface steps �that affect the surface states�9

have indicated that bulk rather than surface states are respon-
sible for the Kondo effect in these situations. The latter can
be important for fine tuning of surface electronic structure,
with potential applications to nanotechnology. A recent study
of CoCun clusters on Cu �111� demonstrated this tunability
by atomic manipulation and showed that each atom in the
vicinity of the magnetic impurity matters for determining the
Kondo effect.10 Moreover, the relevance of the Kondo effect
for the electronic structure of metal surfaces themselves was
demonstrated by the discovery of a sharp density-of-states
peak on the Cr �001� surface and its possible interpretation as
an orbital Kondo resonance.11–13

At the same time, when calculating the Kondo tempera-
tures for real electronic structures a mapping onto one-orbital
Anderson impurity model14 was used. The realistic atomic
geometry of Kondo systems plays a crucial role in complex
electronic properties10,15 and it is, a priori, not obvious that a
one-orbital Anderson impurity approach is sufficient; even
the two-orbital Anderson model demonstrates Kondo physics
essentially different from the single-orbital one.16 A recent
theoretical investigation of Fe impurities in gold and silver

showed that the proper Kondo model corresponds to a S
=3 /2 spin state.17 A realistic, multiband consideration of cor-
relation effects in specific solids is possible in the framework
of the local-density approximation+dynamical mean-field
theory �LDA+DMFT� approach �for review, see Ref. 18�.
However, formally accurate Quantum Monte Carlo �QMC�
calculations19 are always done with taking into account only
the diagonal part of Coulomb interaction,20,21 even with re-
alistic hybridization functions obtained in the LDA. This ap-
proximation is, strictly speaking, uncontrollable. At the same
time, approximate schemes working with the complete Cou-
lomb interaction matrix such as the perturbative scheme22

which is frequently used to calculate electronic structure of
transition metals and alloys23–26 are not sufficient to repro-
duce so subtle correlation features as the Kondo effect, prop-
erly. As for the exact diagonalization11,12 or numerical
renormalization-group12,16,27 methods they are hardly appli-
cable, due to computational problems, for more than two
orbitals per impurity.

The recent progress in continuous-time QMC scheme
�CT-QMC� �Refs. 28 and 29� makes it possible to treat the
complicated Kondo systems.30 Here we will apply this
method to calculate Kondo temperatures as well as spectral
functions for the case of a Co impurity in bulk Cu, in a Cu
�111� surface, and on top of a Cu �111� surface. In contrast
with all previous calculations we will work with an accurate
complete Coulomb interaction U matrix for correlated d or-
bitals. The latter can be calculated from first principles in a
parameter-free way by the GW technique31 so this approach
is completely ab initio. Moreover, the CT-QMC method al-
lows to work, without any essential difficulties, even with the
rigorous frequency-dependent U matrix. As the first step, we
present calculations for the static U matrix but this restriction
is purely technical and can be relatively easily removed in
the future, with a growth of available computer resources.

II. MULTIORBITAL CT-QMC FORMALISM

The multiorbital impurity problem with a general U ma-
trix is described by the effective action,
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where i , j ,k , l are orbital indices and � ,�� are spin indices,
Gij is the local noninteracting Green’s function for correlated
orbitals obtained from the density-functional theory �DFT�
with the help of optimal projection operator to the impurity d
states,

Gij�i�n� = �
nk

�di��nk	��nk�dj	
i�n + � − �nk

, �2�

here �nk is the energy spectrum and �nk is the corresponding
wave function of our system �metal host with magnetic im-
purity�, described by di localized orbitals, and Uijkl is the
Coulomb interaction matrix element,

Uijkl = �i1j2�V12
ee�k2l1	 �3�

here i1
di�r1� is local orthogonal wave function for corre-
lated orbitals and V12

ee is screened spin-independent Coulomb
interaction between electrons at the coordinates r1 and r2.
We used standard quasiatomic LDA+U parametrization of
Coulomb matrix for d electron via effective Slater integrals
or average Coulomb parameter U and exchange parameter J
as described in Ref. 32. We choose the orbital basis related to
spherical harmonics to be sure that the magnetic orbital
quantum numbers in the Uijkl matrix satisfy the following
sum rule: i+ j=k+ l. In this case we will get rid of so-called
three-site terms such as Uikkl with i� l which turns out to
result in a strong sign problem in QMC calculations with real
spherical harmonics.

Following the general CT-QMC scheme28 we expand the
partition function around the Gaussian part of our multior-
bital action �Eq. �1�� which gives the fermionic determinant
over the noninteracting Green’s functions with the rank 2n,
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In order to minimize the number of different interaction
vertices we group different matrix elements of the multior-
bital Coulomb interactions which have a similar structure of
fermionic operators. Since the Uijkl matrix elements are spin
independent, one should look over all possible combinations
of orbital and spin indices, to generate all terms for the in-
teraction in the action �Eq. �1��. Some combinations can vio-
late the Pauli principle and should be removed. For CT-QMC
algorithm it is useful to represent the interaction Hamiltonian
in the following form: Uijklci�

† cl�cj��
† ck��.

The interaction terms can be transformed to the desired
form, depending on relations between spin and orbital indi-
ces: �i� if ����, we can just commute cl� and ck�� and then
cl� and cj��

† . Another combination of indices, that allows the
same commutation, is the following: �=��, i� j, and k� l

�the latter two are following from the Pauli principle�, and
also j� l. These terms we can transform to the following
desirable representation:

Hijkl
int 1 = Uijklci�

† cl�cj��
† ck��. �5�

�ii� In the case when �=�� and j= l we can commute ck��
and cj��

† since in this case i� j and k� l due to the Pauli
principle,

Hijkl
int 2 = − Uijklci�

† ck�cj�
† cl�. �6�

After generating all these terms it is useful to collect and
symmetrize all the terms with identical and equivalent �i.e.,
Uijklci�

† cj�ck��
† cl�� and Uklijck��

† cl��ci�
† cj�� quantum numbers.

In order to reduce the fermionic sign problem we intro-
duce additional parameters, 
, to optimize the splitting of the
Gaussian and interaction parts of the action �Eq. �1��,
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One can see, that the first item in Eq. �7� on Matsubara
frequencies corresponds to bare Green’s function,

Gij
−1 = �i�n + ���ij − �ij��n� , �8�

where � is the hybridization matrix. The second term is just
a constant which we can absorb to the new chemical poten-
tial �̃. Therefore we can rewrite the bare Green’s function in
the following matrix form:

G̃−1 = �i�n + �̃�1 − � . �9�

The optimal choice of parameters 
ij
� would lead to effective

reduction in interaction terms in the action �Eq. �7�� and
therefore minimization of average perturbation order in Eq.
�4�.

Note that relation between G̃ and G can be represented
from Eq. �7� in the following spin and orbital matrix form:

G̃−1 = G−1 − �
̂Û	 . �10�

Here we used the fact that Uilkj =Ulijk following from the
definition of the Coulomb matrix elements �Eq. �3��.

We also need to minimize the fermionic sign problem
which finally leads us to such expression for diagonal alpha
parameters,


�
ii + 
��

j j = 
̄ , �11�

corresponding to the following interaction fields: Uijjini�nj��.
The 
̄ has to be found iteratively in order to get a proper
occupation number of correlated electrons. In the case of
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half-filled one-band Hubbard model 
̄=1 leads to the correct
chemical-potential shift of the U

2 and average 
= 1
2 which

corresponds to the Hartree-Fock subtraction. For nondiago-
nal alpha’s which correspond to the fields of general form
Uijklci�

† cl�cj��
† ck��, where i� l and j�k we find the following

optimal condition:


�
ij + 
��

kl = 0. �12�

Since we symmetrize the interaction U matrix it is neces-
sary to extend the definition of the 
̂ matrix to keep all the
terms in the interaction part of initial action �the last item in
Eq. �7��. It can be done in the following way:28,33 for every
Uijkl field in 50% of updates we deliver the 
 parameters as

il=
diag and 
 jk= 
̄−
diag, and in another 50% as 
il= 
̄
−
diag and 
 jk=
diag for the case of i= l and j=k. For non-
diagonal fields, i.e., i� l and j�k 
il=
nd, 
 jk=−
nd, with
50% probability and 
il=−
nd, 
 jk=
nd otherwise. It was
found that the sign problem is eliminated in the case when

diag
0 and 
̄�1 for occupancy n�

1
2 per state and 
diag

�0, 
̄
1 otherwise. The optimal choice of �
diag� parameter
is few percent of �
̄� to keep minimal average perturbation
order. Another problem is a proper choice of nondiagonal 
nd
parameter. It is easy to see that 
nd is proportional to accep-
tance probability of nondiagonal field in the case where cor-
responding bare Green’s function G jk=0. Since these pro-
cesses are unphysical, the natural choice is 
nd=0. But it
leads to division by zero in the updating the inverse Green’s-
function matrix.28 On the other hand increasing the 
nd pa-
rameter causes a sign problem. We find a reasonable choice
of 
nd to be on the order of 10−4. Moreover for some special
cases such as the atomic limit, where Gmm��� is constant, a
small noise should be added to all the 
 parameters to avoid
numerical divergency.

III. RESULTS

The Co-Cu system is treated as five-orbital impurity
model representing 3d electronic shell of the cobalt atom
hybridized with a bath of a conduction Cu electrons. We
consider Co impurity atoms in the bulk as well as in and on
the Cu �111� surface to study the effect of decreasing the
coordination of the magnetic impurity from 12 in the bulk,
via 9 in the surface to 3 on top of the surface. In all cases, the
bath Green’s function was obtained using the first-principles
DFT within the supercell approach. The DFT calculations
were carried out with the Vienna ab initio simulation pack-
age �VASP� �Refs. 34 and 35� using the projector-augmented
wave �PAW� basis sets.36 The simulation of a cobalt impurity
in the bulk employed a CoCu63 supercell structure with the
lattice constant corresponding to pure copper. The surfaces
were modeled by supercells of Cu �111� slabs containing five
Cu layers with 2	2 and 3	4 lateral extension for Co in and
on the surface, respectively. The PAW basis naturally pro-
vides the projectors �di ��nk	 required in Eq. �2�. In using
these PAW projectors, directly, we employ here the same
representation of localized orbitals as used within the LDA
+U scheme implemented in the VASP code itself or as dis-
cussed in the context of LDA+DMFT in Ref. 37.

For the problem of a single Co impurity in a bulk copper
matrix the basis set of spherical harmonics Ylm is used. In
this basis the interaction part of the Hamiltonian contains
only terms of the following form: diagonal density density
such as Hint

diag=Uijjini�nj��, where ni�=ci�
† ci� and nondiagonal

Hint
nd =Uijklci�

† cj��ck��
† cl�, where i� j and k� l. The Coulomb

matrix for the d-electron shell in the basis of complex har-
monics contains 45 nonequivalent diagonal terms. Nondiago-
nal terms can be further classified into spin flips, where i= l
and j=k and the most general four-orbital interactions, where
this condition is not fulfilled. Notice, that pair-hopping terms
�i=k , j= l� are restricted by symmetry in this basis. In de-
scription of d-electron shell we have to involve 20 non-
equivalent spin flips and 64 terms of the most general form.

To find the effects, caused by nondiagonal terms, we used
two different interaction Hamiltonian. First, interaction with
only diagonal terms was used. In this case there is no sign
problem. Then, the complete Coulomb interaction matrix of
the 3d-electron shell of the cobalt atom with 129 terms was
included.

As a benchmark we use impurity problem in the atomic
limit since it can be compared with the result of exact diago-
nalization �ED� method. The results for the imaginary time
Green’s function for a five-orbital model with different
chemical potentials corresponding to the d5 and d8 configu-
rations are shown in the Fig. 1 in comparison with ED re-
sults. The significant difference between density-density �di-
agonal� interaction and the full vertex can be found both at
half-filled case with relatively high temperature with the U
=1 eV, J=0.4 eV, and �=2 eV−1 and at nonsymmetric
case even for lower temperature. Note that in the d8 and d7

cases the many-body ground states have different symmetry
for diagonal interactions and nondiagonal full vertex. The
results for d8 configuration with the interaction parameters
U=2 eV, J=0.7 eV, and �=3.7 eV−1 are shown in the in-
set of the Fig. 1. The difference between Green’s function of
the interacting system with full Coulomb interaction and
density-density one is visible on the G���. We find a very
good agreement between CT-QMC results and ED solution.

In the inset of Fig. 2 we show the distribution of nondi-
agonal terms, i.e., the contribution of Coulomb fields of the

FIG. 1. �Color online� Comparison with ED in the atomic limit
�without hybridization to the bath of free electrons�. Main graph:
U=1 eV, J=0.4 eV and �=2 eV−1, for five-orbital impurity at
half filling; inset: U=2 eV, J=0.7 eV, and �=3.7 eV−1, for five-
orbital impurity with eight electrons.
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form �5� to the resulting Green’s function. The zero entry of
this histogram counts the number of steps when all the fields
contributing to the fermionic determinant �Eq. �4�� were of
density-density type. The entry with index 2 show us the
number of steps where the average �Eq. �4�� was containing
two spin-flip-type fields �Eq. �5��. Such situation takes place,
for example, when one Coulomb field representing spin-flip
ci↑

† cj↓ci↓
† cj↑ process was used to construct the determinant.

One can see in the inset of Fig. 2, that only even orders of
interaction histogram have large acceptance probability at
high temperature and even the tenth order in nondiagonal
interactions has nonzero contribution. The third- and fifth-
order contributions exist due to the finite 
nd parameter.

Typical distribution of the perturbation order �five-orbital
AIM with seven electrons, U=4 eV, J=0.7 eV, and �
=10 eV−1� is shown in Fig. 2, main plot. Dash line denotes
the perturbation order during accepted steps that involved
nondiagonal fields. The coincidence of distributions maxima
of both histograms demonstrate that the acceptance rate
mostly depends on diagonal interactions.

For many-body calculations of the Co impurity in the Cu
matrix we need to find the effective d-orbital chemical po-
tential which defines the number of 3d electrons of cobalt.
The particular electronic configuration of a Co atom in a
copper matrix is unknown but the DFT results �nd=7.3� give
us an evidence that it is close to d7 configuration. Therefore
we performed all impurity calculations for cobalt d7 configu-
ration. The density of states being discussed in the following
have been obtained from the QMC Matsubara Green’s func-
tions by analytical continuation using the maximum entropy
method.38

The results of the CT-QMC calculations for U=4 eV and
J=0.7 eV are presented in Fig. 3 compared to the bare im-
purity density of states for cobalt impurity in the bulk. There
is a pronounced difference between Kondo-type resonance
near the Fermi level. In the case of full U vertex it becomes
more narrow and located much closer to the Fermi level. The
sign problem for realistic five-band model depends crucially
on the symmetry of Coulomb Vertex Uijkl and magnitude of
nondiagonal terms in the bath Green’s functions Gij. The

most serious problem is related with nondiagonal terms of U
matrix, therefore we use a basis of complex spherical har-
monics. In this case there is no so-called three-cite terms or
correlated hopping, e.g., Uikkl. On the other hand, in this
basis, the bath Green’s-function matrix Gij for d electrons has
two nondiagonal elements in the bulk of cubic crystals and
much more on the surface and in the first layer. Moreover
there are a lot of small four-site terms Uijkl which result in a
large sign problem for surface adatom calculations. The sign
problem for a Co impurity in the bulk is not large and aver-
age sign is between 0.90 and 0.97 depends on the simulation
temperature.

In the case of nondiagonal interaction we used so-called
cluster steps which correspond to complex Monte Carlo up-
dates with more than one additional interaction field. This
scheme became essential for spin-flip-type interaction or
more general U vertex which can contribute to the Green’s
function only in the second- or higher-order “diagrammatic”
expansion and this can let the Monte Carlo process to ex-
plore all the phase space. We note that probability of nondi-
agonal terms drastically decrease with increasing the hybrid-
ization to the bath. Nevertheless, at least for three-band
benchmarks we found remarkable effect of the spin-flip
terms if the bath Green’s function has peaks in the vicinity of
the Fermi level on the distance on the order of J.

We estimated the renormalization factor Z= �1
−d� /dE�−1 for U=4.5 eV, J=0.7 eV, and �=10 eV−1 and
find Zt2g

=0.5 and Zeg
=0.4 which shows the reasonably

strong interaction of Co d electrons. We estimate the Kondo
temperature �TK� using the temperature dependence of full
width at half maximum for resonance near Fermi level. Since
our simulation temperature is very high compared to TK we
can get only order of magnitude of TK=0.1 eV, which is
reasonable for Co impurity systems.8

We also performed the CT-QMC calculation of cobalt im-
purity on the surface of Cu�111� and embedded into the first
copper layer. In contrast to the bulk system the surface one
has a large sign problem, related with the relatively large
nondiagonal elements of the bath Green’s functions. Al-
though changing of the sign is a very rare event �less than
0.03% of the accepted steps�, we used simple constrained

FIG. 2. �Color online� Histograms of Monte Carlo distributions
for average perturbation order. Main graph: U=4 eV, J=0.7 eV,
and �=10 eV−1 for five-orbital impurity coupled to realistic Cu
bath with seven electrons; inset: U=4 eV, J=0.7 eV, and �
=1 eV−1 in the case of five-orbital impurity model, coupled to
semielliptical bath with bandwidth W=0.5 eV at the half filling.

FIG. 3. �Color online� Total DOS of 3d orbital of Co atom
embedded in Cu matrix. Model parameters: U=4 eV, J=0.7 eV,
and �=10 eV−1 for five-orbital impurity with seven electrons.
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sign calculations. This sign problem prevents us from calcu-
lating at sufficiently low temperatures, which would be re-
quired for reliably obtaining a quantitative value of the width
of the Kondo resonance. However, a qualitative study of how
the local coordination affects the spectral properties of the
impurity is possible at �=10 eV−1. A comparison of the dif-
ferent spectral functions for the bulk-, surface-, and first-
layer cobalt impurity is presented in Fig. 4. One can see
clearly the change in the Kondo resonance width as a func-
tion of reduced dimensionality, i.e., when going from the
bulk into or on the surface. At our simulation temperature,
the width of the Kondo resonance of Co in and on the sur-
face appears to be similar. However, the high-energy features

of the spectra differ markedly between Co on and in the
surface. The upper Hubbard peak is shifted to higher ener-
gies upon reducing the coordination.

IV. CONCLUSIONS

We performed continuous-time QMC calculation of Co
impurities in copper and consider a realistic five-orbital
Anderson impurity model including the full Coulomb matrix.
The relevance of the nondiagonal part of the Coulomb matrix
in the Kondo problem is discussed. Comparing Figs. 3 and 4
we find that nondensity-density terms in the Coulomb vertex
are required to obtain quantitative predictions of spectral
functions and related properties. The position of the Hubbard
peaks and the Kondo peak is markedly changed by spin flips
and other nondiagonal terms of the Coulomb vertex. Thus,
obtaining sensitive observables such as Kondo temperatures
quantitatively requires accounting for these terms. On the
other hand hybridization effects such as bringing the Co im-
purity from bulk to the surface and having it on top of the
surface can be quite drastic. As Fig. 4 shows, the sharpening
of the Kondo resonance and the shifting of the Hubbard
bands is much stronger when going from bulk to the surface
than on switching on the nondiagonal part of Coulomb ma-
trix. Only the qualitative overall shape of the DOS and its
response to strong hybridization changes are well described
by density-density-type terms of the Coulomb vertex.
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